
IBM

WebSphere MQ

Data Conversion Under
WebSphere MQ

2

Table of Contents

.. 3

.. 3
Introduction ... 4
Acronyms and terms used in Data Conversion .. 5
The Pieces in the Data Conversion Puzzle ... 7

Coded Character Set Identifier (CCSID) .. 7

Encoding .. 7

What Gets Converted, and How ... 9
The Message Descriptor .. 9

The User portion of the message ... 10
Common Procedures when doing the MQPUT ... 10
The message is entirely numeric data .. 11
The message is entirely character data ... 11
The message is mixed numeric and character data .. 11
Common Procedures to ensure conversion .. 13

Where to Find the Conversion Tables .. 14
On WebSphere MQ for AIX ... 14

On WebSphere MQ for HP-UX .. 14

On WebSphere MQ for Sun Solaris and Linux .. 15

On WebSphere MQ for Windows .. 15

Testing Conversion ... 15

Hints and Tips ... 16
Tracing (Windows, UNIX and iSeries) .. 18
Supporting multiple languages .. 19
WebSphere MQ and UNICODE ... 20

What is UNICODE? ... 20

WebSphere MQ support for UNICODE ... 20

UCS-2 and UTF-8 - which should you use? ... 21
UCS-2 .. 21
UTF-8 .. 21

UNICODE CCSIDs .. 21

Designing UNICODE applications for WebSphere MQ .. 21

GB18030 .. 22

Default data conversion .. 23
Enabling default data conversion ... 23

Data Conversion Under WebSphere MQ

3

Limitations .. 23

Appendix A. Control code conversions .. 25
Appendix B. CCSID.TBL ... 27

WebSphere MQ for AIX, HP-UX ... 27

WebSphere MQ for Windows, Linux, Sun Solaris ... 27

Appendix C. How the non-z/OS platforms treat EBCDIC newline 28
Appendix D. How CCSIDs relate to code set names ... 29

AIX, HP-UX and DEC-OVMS .. 29

Appendix E. How to set the Queue Manager CCSIDs .. 30
How to set the Queue Manager CCSID on WebSphere MQ for z/OS 30

Non z/OS platforms .. 30
Displaying the Queue Manager CCSID ... 30
Setting the Queue Manager CCSID on WebSphere MQ for UNIX products 30
Setting the Queue Manager CCSID on WebSphere MQ for Windows 32
Setting the Queue Manager CCSID on WebSphere MQ for iSeries 32
Displaying iSeries CCSID values .. 32
Setting the Queue Manager CCSID on MQSeries for HP OpenVMS 33

Appendix F. How do EBCDIC Latin 1 codepages differ .. 34
Appendix G. Windows and OEM codepages .. 37
Appendix H. Notices ... 39

Trademarks ... 39

Data Conversion Under WebSphere MQ

4

Introduction
Data conversion in WebSphere MQ is a constant companion. As soon as you create a
connection between two Queue Managers, data conversion has entered the picture.
Regardless of whether you are connecting two ‘like’ systems (ASCII to ASCII, or EBCDIC to
EBCDIC), or even if your two Queue Managers are on the same physical machine -- the
WebSphere MQ data conversion routines will be invoked. In the case of a connection
between two ‘like’ systems, these routines will likely decide that no work is necessary, but a
WebSphere MQ trace will always show the calls to the xcsQueryCCSIDType routines
whenever message data is being handled in WebSphere MQ.

Revision information
Revised June 2008: Corrections and expansion.

Revised October 2009: Corrections.

Data Conversion Under WebSphere MQ

5

Acronyms and terms used in Data Conversion
Here are a few of the words and acronyms which may be used in this and other documents
you may read about data conversion. They are ‘informal’ definitions

Table 1. Acronyms and terms

code page A number which IBM and others assign to a particular assignment of character
shapes (glyphs) to binary codes.

character
set

A number used to identify the set of characters represented, without reference
to the codes used for the characters. One character set can be encoded into
more than one code page.

CCSID Coded Character Set IDentifier. A number. An IBM term which extends the
meaning of code page to include other code information. Defined formally in
the CDRA (Coded Character Representation Architecture) documents from
IBM (see also “Coded Character Set Identifier (CCSID)”).

code set UNIX term equivalent to code page. On UNIX systems this is a character
string.

SBCS Single Byte Character Set. A code page with up to 256 characters which can
be represented by a single 8 bit byte.

DBCS Double Byte Character Set. A code page with up to 65536 characters
represented by two 8 bit bytes. Also used to mean anything related to
languages which use DBCS or MBCS code pages. Note that, in practice, most
languages which use DBCS also support an SBCS character set to represent
Latin characters and have differing ways of switching between SBCS and
DBCS in a character string.

MBCS Multiple Byte Character Set. Some encodings used for large character set
languages can use 2, 3, or 4 bytes for each character. MBCS is the general
term used to cover all non-SBCS character sets, but DBCS is often used
instead.

Mixed A CCSID or Codepage which supports an SBCS subset and a DBCS or MBCS
subset. The CCSID uses for WebSphere MQ queue manager data must be
‘mixed’ or SBCS to be able to code object name characters as single bytes.

EBCDIC Extended Binary Coded Decimal Interchange Code: Used by IBM host
systems (running z/OS or VM operating systems) or IBM iSeries using the
OS/400 operating system.

ASCII American Standard Code for Information Interchange. The code used as the
basis for most codes apart from EBCDIC.

USASCII The US English version of ASCII.

euc Extended unix code. MBCS encoding used on UNIX platforms. These
include: eucJP (Japanese), eucKR (Korean), eucTW (Traditional Chinese,
used in Taiwan), and eucCN (simplified Chinese, used in the PRC).

Data Conversion Under WebSphere MQ

6

SOSI Shift Out / Shift In. The state dependent method used in EBCDIC SBCS /
DBCS code pages to indicate the DBCS characters.

UNICODE A single 2 byte code page which defines most of the characters used by the
languages now used throughout the world. See UCS-2, UTF-8, UTF-16 and
UTF-32 for encodings.

UTF-8 An encoding of UNICODE which is variable in length from 1 to 3 bytes and
has the property that ASCII characters 00-7F(hex) are single bytes.

UTF-16 An encoding of UNICODE which uses a 16 bit integer to represent up to 64
thousand characters, and a further million using two 16-bit characters from the
‘surrogate’ range. Note that WMQ, at present, supports the UCS-2 subset of
UTF-16 only.

UTF-32 An encoding of UNICODE which uses a 32 bit integer. Note that WMQ does
not, at present, support UTF-32.

UCS-2 An encoding of UNICODE which uses a 16 bit integer to represent each
character, now being replaced by UTF-16. UCS-2 is the subset of UTF-16
without surrogate pairs.

ISO8859 A series of ASCII based standards which define encodings for SBCS character
sets used by Latin, Hebrew, Arabic, and Cyrillic based languages. ISO8859-1
is for Western Europe. These are supported on most UNIX boxes and are the
basis from which some of the Microsoft Windows codepages (1250-1256)
were developed.

ISO10646 The ISO universal codeset. 4 bytes per character are defined, but essentially
UNICODE is a 2 byte subset.

Data Conversion Under WebSphere MQ

7

The Pieces in the Data Conversion Puzzle
There are two pieces to the data conversion puzzle.

Coded Character Set Identifier (CCSID)
The Coded Character Set ID (CCSID), also called a Code Page, is a number assigned to a
particular method of representing data. A code page will assign character and non-character
data to hexadecimal values ranging from ‘00’ to ‘FF’; or ‘0000’ to ‘FFFF’ in Double Byte
Character Set (DBCS) code pages, which are used for alphabets that cannot be represented by
256 positions (e.g. Kanji). CCSID conversion tables, which are used to convert from one
CCSID to another, generally convert character data and control characters. See Appendix A,
“Control code conversions” for more details.

Some well known CCSID’s:

 CCSID 437 -- this is an ASCII code page, used mainly under OS/2, DOS, and Microsoft
Windows console (OEM) windows.

 CCSID 850 -- this is another common ASCII code page, used mainly on under OS/2,
DOS, and Microsoft Windows console (OEM) windows used on PCs in Europe.

 CCSID 819 -- this is the ISO 8859-1 standard Western European ASCII code page. Used
by most UNIX locales. The related CCSID with Euro support is 923.

 CCSID 500 -- This is an EBCDIC code page, used mainly on z/OS. It is known as the
‘International’ codepage. The related CCSID with Euro support is 1148.

 CCSID 037 -- This is another popular EBCDIC code page, used on OS/400 and VSE/
ESA. It is the ‘US English’ codepage. The related CCSID with Euro support is 1140.

 CCSID 1252 -- this is the windows native codepage used on Windows 95 NT, and later. It
is a superset of CCSID 819: It has extra graphic characters but does not support the ISO
control characters in hex 80-9F locations.

Encoding
Encoding is generally taken to mean the method that this platform uses to represent numeric
data 1. There are two general types:

 ‘LittleEndian’, used by Intel processors (e.g Windows, Linux on Intel). In this encoding,
the least significant digits appear in lower memory locations, e.g. the number 437 would
be represented (in hex) as X’BF01’.

 ‘BigEndian’. The most significant digits are in lower memory locations. e.g. the number
437 would be represented (in hex) as X’01BF’.

Data Conversion Under WebSphere MQ

8

As you can see from the above explanations, even numeric data may need conversion; even if
passed between different platforms which might use the same CCSID. Here is a list of some
of the platforms used by WebSphere MQ (client and server) and the encoding scheme used on
that platform:

Table 2. Encoding scheme by platform

Platform Encoding Scheme
zSeries BigEndian
AIX BigEndian
iSeries BigEndian
HP-UX BigEndian
Windows LittleEndian
SINIX BigEndian
Sun Solaris (on SPARC processors) BigEndian
Sun Solaris (on INTEL processors) LittleEndian
Linux (Intel) LittleEndian

Linux (zSeries) BigEndian

NonStop Kernel (NSK) BigEndian
OVMS Alpha BigEndian
Open VMS VAX BigEndian
Tru64 Unix BigEndian

Footnotes:
1. For the pedants, numeric in this document means integer numeric. WebSphere MQ does

not, at present, convert floating point formats.

Data Conversion Under WebSphere MQ

9

What Gets Converted, and How
WebSphere MQ needs to perform data conversion for two different purposes.

 For Channel Communication -- When a channel between two WebSphere MQ Queue
Managers is started, the two Queue Managers will negotiate which CCSID and encoding
protocol they will use for channel communications. This CCSID and encoding scheme is
then used for encoding the WebSphere MQ TSH (This is the Transmission Segment
Header -- a WebSphere MQ control block that you may see passed back and forth
between Queue Managers if you look at a WebSphere MQ trace) and the Message
Descriptor. The Message Descriptor is created and populated by your application when
you do the MQPUT, but WebSphere MQ needs to be able to understand what it contains,
regardless of the platform that it was created on, thus it will be converted automatically by
WebSphere MQ regardless of whether the user portion of the message is converted or not.

 The User Portion of the Message -- The CCSID and encoding scheme of the user portion
of the message are contained in the Message Descriptor, and were set at MQPUT time.
This part of the message will not be automatically converted by WebSphere MQ without
some work on the part of the user. This will be discussed in more detail below.

The Message Descriptor

The Message Descriptor is not entirely character data, so some of it will be converted as
character data, some as numeric, and some is passed unconverted. The conversion of the MD
is as follows:

Table 3. Message Descriptor conversion

Field Name Field Length in bytes Offset Converted as
StrucId 4 ‘00’x Character
Version 4 ‘04’x Numeric
Report 4 ‘08’x Numeric
MsgType 4 ‘0C’x Numeric
Expiry 4 ‘10’x Numeric
Feedback 4 ‘14’x Numeric
Encoding 4 ‘18’x Numeric
CodedCharSetId 4 ‘1C’x Numeric
Format 8 ‘20’x Character
Priority 4 ‘28’x Numeric
Persistence 4 ‘2C’x Numeric
MsgId 24 (‘18’x) ‘30’x Byte
CorrelId 24 (‘18’x) ‘48’x Byte
BackoutCount 4 ‘60’x Numeric

Data Conversion Under WebSphere MQ

10

ReplyToQ 48 (‘30’x) ‘64’x Character
ReplyToQMgr 48 (‘30’x) ‘94’x Character
UserIdentifier 12 (‘0C’x) ‘C4’x Character
AccountingToken 32 (‘20’x) ‘D0’x Byte
ApplIdentityData 32 (‘20’x) ‘F0’x Character
PutApplType 4 ‘110’x Numeric
PutApplName 28 (‘1C’x) ‘114’x Character
PutDate 8 ‘130’x Character
PutTime 8 ‘138’x Character
ApplOriginData 4 ‘140’x Character
GroupId 24 (‘18’x) ‘144’x Byte
MsgSeqNumber 4 ‘15C’x Numeric
Offset 4 ‘160’x Numeric
MsgFlags 4 ‘164’x Numeric
OrginalLength 4 ‘168’x Numeric

Note: MsgId, CorrelId, Accounting Token and GroupId are NOT considered to be character
data, and as such WILL NOT be converted as character data. Many applications put character
data into these fields, but if the message is being exchanged between ASCII and EBCDIC
platforms, and the application on the other side needs to be able to read these fields, then it is
the responsibility of the application (or a user exit) to convert these fields. WebSphere MQ
puts no restriction on the format of the data in these fields, and indeed, if you allow
WebSphere MQ to create the MsgId field, it will NOT be strictly character data.

The User portion of the message
The user portion of a WebSphere MQ message may or may not be converted for you by
WebSphere MQ. It may be that you would not want to have the message converted, because it
consists entirely of numeric data (although you still need to take into account the differences
in encoding between different platforms). It may be that only certain parts of the message
need to be converted, because the message consists of mixed numeric and character data. It
may be that the entire message can be safely converted, because it consists of entirely
character data. Let’s look at each of these scenarios in turn.

Common Procedures when doing the MQPUT
Regardless of whether the message is character, numeric, or a mixture of both, in the
application that is doing the initial MQPUT of the message, you should:

 Set MQMD.CodedCharSetId to MQCCSI_Q_MGR. This will ensure that WebSphere
MQ will pick up the default CCSID of the Queue Manager you are doing the MQPUT
from. The reason for this is that the CodedCharSetId field in the Message Descriptor is
both an input and an output field. This means that if the application is using the same
MQMD structure for both MQPUTs and MQGETs, WebSphere MQ will be putting the
CCSID of every message that it MQGETs into this field. If one of these messages was not
using the same CCSID as that of the Queue Manager, and you did not convert it, then this

Data Conversion Under WebSphere MQ

11

field will have been changed to an unanticipated value when the time comes to do the
next MQPUT. Even if you specified that you wished to convert the message on the
MQGET, but the MQGET had an unexpected return code (such as
MQRC_TRUNCATED_MSG_ACCEPTED) then the message will remain unconverted,
and the CodedCharSetId field will be set to the CCSID of the unconverted message.

Note: In a client application, MQCCSI_Q_MGR refers to the CCSID of the application
locale, not the CCSID of the remote queue manager. In all cases, when setting
MQMD.CodedCharSetId to MQCCSI_Q_MGR, it is the responsibility of the application
to ensure that the implied CCSID correctly represents the string data in the message.

 Set MQMD.Encoding to MQENC_NATIVE. This will ensure that WebSphere MQ picks
up the correct encoding for the platform you are running on.

The message is entirely numeric data
If the message is entirely numeric data, and you know that the numeric encoding schemes of
the two platforms you are passing the message between are the same, then you need to do
nothing special for data conversion. If you suspect that the numeric data encoding schemes of
the two platforms may be different, or if you wish to plan for a future when this might be the
case, you should use the section below on mixed character and numeric data as a guide, since
this will work equally well for completely numeric data.

The message is entirely character data
If the message you are passing is entirely character data then it is very easy to have
WebSphere MQ do all of the work for you. In the application that is doing the MQPUT of the
message, you should set MQMD.Format to MQFMT_STRING. MQFMT_STRING is a
constant that equates to the string value “MQSTR “. This value in the Format field will let
WebSphere MQ know that the message consists entirely of character string data.

The message is mixed numeric and character data
If the message is mixed numeric and character data, then you will need to supply a conversion
user exit for WebSphere MQ to use to convert the data. WebSphere MQ provides skeleton
structures and utilities to help you create these user exits. You should refer to the WebSphere
MQ Application Programming Guide for complete information on this subject, but here is an
outline of the steps you need to take to get this done:

1. Decide on a name for your message that will fit in the MQMD.Format field in the
message descriptor (8 characters). You will need to make sure that you always fill in
MQMD.Format with this name whenever you send this message.

2. Create a C-structure that represents the structure of your message, e.g.
 typedef struct _mymsg {
 short a;
 char b[10];
 long c;
 short d;
 char e;

Data Conversion Under WebSphere MQ

12

 } Mymsg;
3. Run this structure through the crtmqcvx utility (for Unix and Windows) or

CVTMQMDTA (iSeries) to create a code fragment for your data conversion exit.

3. There is a common sample skeleton data conversion exit called amqsvfc0.c. Now replace
the commented out section in this sample with the code fragment generated above. Make
sure you also put a prototype declaration for the call at the top of the sample (after the
#include statements for the WebSphere MQ supplied headers is a good spot).

3. Decide on an entry point name for your code (usually EntryPointxxxxxxxx -- where
‘xxxxxxxx’ is the MQMD.Format name you decided on), and make sure you replace the
dummy entry point name in the MQENTRY and MQDATACONVEXIT entries in the
sample. Make sure you put this entry point name in the EXPORTS section of your .DEF
file as well.

4. Compile your exit as a DLL (for Windows), a shared library (for UNIX), or an
(OBJTYPE *PGM) (for OS/400).

5. Make sure the resulting output is in your PATH (for Windows), a link to /usr/lib or
equivalent (for Unix), or the library list for the WebSphere MQ job (OS/400).

Data Conversion Under WebSphere MQ

13

Potential problems to be aware of
 The WebSphere MQ macros, as provided, expect all structures to be packed and the C-

language on most platforms will tend to put padding characters in structures between
character and numeric data, if the boundaries are not on a word boundary. To overcome
this:

 on WebSphere MQ for z/OS, declare the data structure as:
_Packed struc_name xxxx

 on WebSphere MQ for AIX, specify the following compiler option:
-qalign=packed

 on WebSphere MQ for Windows, specify the following as a directive in your
code:
#pragma _Packed or
#pragma pack(1)

 Avoid the use of the INT and LONG data types, since the length of these depend on the
architecture and operating system. Use MQLONG or MQSHORT instead.

 On UNIX platforms which support threading and non-threading or multiple different
threading models, you should compile your exit for each of the models. If you don’t build
all versions you may find that that the exit is not found if it is called by different
applications or by the WebSphere MQ channel code if you have specified CONVERT
(YES) on your SENDER channel definition.

Common Procedures to ensure conversion
Regardless of the content of the message, if conversion is required, you should:

 In the application doing the MQGET of the message, set MQMD.CodedCharSetId to 0 to
pick up the default CCSID of the QMGR. This will ensure that WebSphere MQ knows
the correct CCSID to convert to.

 In the application that is doing the MQGET of the message, make sure you specify
MQGMO_CONVERT as one of the MQGMO.Options. This field has many options that
should be either added or bitwise OR’ed together if you need to specify more than one.

 It is recommended that you always do the data conversion on the MQGET of the message,
since the message may take many ‘hops’ across different platforms on its way to its
destination, and doing data conversion on each ‘hop’ is a waste of resources.

 Some of the early Version 1 and 2 products did not support data conversion. If you
specify CONVERT(YES) on the SENDER channel that sends the data to its final
destination, WebSphere MQ will convert the data into the CCSID of the queue manager
on the target system. If you are using a conversion user exit to convert numeric or mixed
numeric and character data, and you are doing the conversion by specifying CONVERT
(YES) on a SENDER channel definition, then your user exit will need to reside on the
system where this SENDER channel is defined. Using this option is not recommended.

Data Conversion Under WebSphere MQ

14

Where to Find the Conversion Tables
The conversion tables are in different directories, depending on the platform. In some cases,
such as WebSphere MQ for iSeries, you cannot add conversion tables -- the operating system
provides all of the conversion tables you’re going to get. Most of the Unix platforms provide
a method for adding conversion tables; all it takes is adding the binary conversion table to a
certain directory on the box.

On WebSphere MQ for AIX
Under AIX, the conversion tables go into (and existing conversion tables can be found in) the
/usr/lib/nls/loc/iconvTable directory.
The converters use codeset names on AIX. These are usually IBM-xxxx where xxxx is the CCSID number, but
there are exceptions. See Appendix D, “How CCSIDs relate to code set names” for some of these
differences.
WebSphere MQ for AIX also uses the ‘uconv’ method for supporting new DBCS and some SBCS conversions.
The tables in /usr/lib/nls/loc/iconvTable are only used for SBCS. These can be generated using
the AIX genxlt command. The uconv method tables are more complex and use the uconvdef command. If you
think you need to create new conversion methods using this method look at the articles in the AIX info-explorer
documentation carefully. To determine if conversion is supported by the uconv method check the following:

In /usr/lib/nls/loc/uconvTable (Note uconvTable not iconvTable) there should be two files, one
for the from-codeset and one for the to-codeset.
In /usr/lib/nls/loc/iconv there should be a link from file from-codeset_to-codeset to file
/usr/lib/nls/loc/iconv/Universal_UCS_Conv

On WebSphere MQ for HP-UX
The converters use codeset names on HP-UX. These are usually cpxxxx where xxxx is the
CCSID number, but there are exceptions. See Appendix D, “How CCSIDs relate to code set names”
for some of these differences.

On HP-UX the conversion tables go into (and existing conversion tables can be found in) the
/usr/lib/nls/iconv/table directory.
In the directory /usr/lib/nls/iconv is a file called iconv.config which contains aliases for
character set names. If you look in this file after WebSphere MQ is installed you will see that extra entries have
been made for the additional support provided by the product.

Data Conversion Under WebSphere MQ

15

On WebSphere MQ for Sun Solaris and Linux
The conversion tables go into (and existing conversion tables can be found in) the /opt/mqm/
lib/iconv directory.

The conversion code used is similar to Windows.

The tables on Sun Solaris are named by joining together the hexadecimal versions of the codepage numbers, so
conversion from 500 to 850 will be in table 01F40352.tbl. In the conversion table directory file readme.ccs
describes most of the shipped tables.

On WebSphere MQ for Windows
The conversion tables go into (and existing conversion tables can be found in) the c:\mqm
\CONV\TABLE directory where c:\mqm is the disk and directory in which the user installed WebSphere
MQ (c:\mqm is the default).

The tables on Windows are named by joining together the hexadecimal versions of the codepage numbers, so
conversion from 500 to 850 will be in table 01F40352.tbl. In the conversion table directory file readme.ccs
describes most of the shipped tables.

Testing Conversion
On WebSphere MQ for AIX and HP the iconv command can be used to exercise any of the installed
conversion tables. Entering the command
iconv -f fromcodeset -t tocodeset fromfile > tofile

where fromcodeset is the codeset of the file fromfile, tocodeset is the codeset you want
tofile to be in.

Data Conversion Under WebSphere MQ

16

Hints and Tips
Due to the nature of ‘known problems’, this section of the document should be considered
subject to change. You should visit the WebSphere MQ Family Product Support page if you suspect
a conversion problem that is not documented here.

 On the HP-UX operating system the NLS feature is an optional installable feature that
MUST be installed for data conversion to work. You should make sure that this
feature is installed before you even install WebSphere MQ, since WebSphere MQ will
place some code page tables in the NLS created directories.

 The HP-UX operating system default code page for Western European locales is 1051
(ROMAN8). You are recommended to change the codepage to iso8859-1 (CCSID
819) whenever you create a WebSphere MQ Queue Manager. To do this:

o Enter ‘locale -a’ to find out which “ISO88591” locale is supported/installed on
your system. The Quick Beginnings for WebSphere MQ for HP-UX Chapter
10. “Code sets supported on WebSphere MQ for HP-UX” describes the
various locales for the CCSID of 819.

o BEFORE you issue crtmqm to create your Queue Manager, issue: export
LC_CTYPE=en_US.ISO88591 (or xx_YY.ISO88591 for whatever was
returned from LOCALE -a)

Once the QMGR is created, it will always use the LC_CTYPE which it was
created under.

 The Application Program Reference manual contains the tables showing what
conversion support is provided on each platform.

 If you have a problem with the conversion of some characters to or from EBCDIC,
(especially the exclamation point), make sure that the z/OS queue manager CCSID
matches the codepage the user is expecting the data in. The default CCSID of 500 has
many characters with different hex values to those often used in the codepage which is
being used. For a full list of these differences see Appendix F, “How do EBCDIC Latin 1
codepages differ”. If this happens get the z/OS queue manager CCSID changed. See
“How to set the Queue Manager CCSID on WebSphere MQ for z/OS” for instructions.

 On Unix platforms you may have to compile two versions of each conversion exit
depending on the threading options you program uses. If your new format is
MYFORMAT, on AIX and HP-UX the name of the extra version is MYFORMAT_r,
and on Solaris it is MYFORMAT_d. See the chapter on Data-conversion exits in the
Application Programming Guide for details on how to compile these extra exits. If
you install the DCE option it is a good idea to compile both variants as the mover
code will use DCE which requires the extra exit if you use the convert on send option.
A symptom of this problem is receiving MQRC_FORMAT_ERROR (2110, x’83E’),
or a message saying that the _r or _d version of the exit could not be found.

 Conversion of PCF data: If the CCSID in MD of a message containing PCF data is the
same as the requesting CCSID in the MD of the MQGET structure, the WebSphere
MQ workstation products do not convert the data. If individual PCF strings are in
different CCSIDs they will not be converted. To force the scanning of all the PCF

Data Conversion Under WebSphere MQ

http://www.ibm.com/software/integration/mqfamily/support/

17

structures for different CCSIDs use the value MQCCSI_EMBEDDED as the message
CCSID when the message is put on the queue.

 On AIX, if you get the occasional report of a conversion problem when displaying
messages from channels, and your queue manager is running in a non-Latin locale (for
example Japanese), this may be due to the listener process started by inetd running in
the ‘C’ locale. Work arounds which will stop this are:

Set default data conversion (see “Default data conversion”), or modify the program
called by inetd to call instead a shell script. The shell script should set the locale
environment variables and then call the WebSphere MQ listener program.

 On Linux, Solaris and Windows, conversion tables are provided by WebSphere MQ. On AIX, HP and
iSeries, a combination of WebSphere MQ supplied and operating system supplied conversion tables are
used. Conversion tables supplied by WebSphere MQ tend provide round-trip integrity, i.e. when a piece
of data is converted from one CCSID to another and back again, the original data is recovered. Round-
trip tables assign a different mapping to every character. If a character only exists in the from CCSID
and not in the to CCSID, an arbitrary but unique mapping is assigned to ensure that the conversion
process can round trip.

There are other ways of constructing conversion tables. One way is to map all “unknown” characters
that exist in the from CCSID but not in the to CCSID to a substitute character. Such tables do not
provide round-trip integrity, i.e. when a piece of data is converted from one CCSID to another and
back, the original data may not be recovered. Conversion tables supplied with the operating system are
often of this type.

If you require specific handling of “unknown” characters, you may wish to perform the data conversion
within your application using conversion tables and algorithms that satisfy your requirements.

Data Conversion Under WebSphere MQ

18

Tracing (Windows, UNIX and iSeries)
When looking at trace, a return code of xecX_W_INCOMPATIBLE_CCSIDS x’10806111’
or decimal 0276848913 from the function xcsCCSIDCompatible is NOT an error. It indicates
that the two CCSIDs passed into the function are valid but that data conversion is required
even for object names. The code should then proceed to call the function to perform this
conversion.

When the conversion table is not found: The CCSIDs, and code set names used are shown.
During initialization the trace will show if default conversion is selected, and, if it is, what
codepages are selected.

Data Conversion Under WebSphere MQ

19

Supporting multiple languages
WebSphere MQ can help developers of true multilingual applications but the challenges
extend beyond message passing. I will not discuss the problems of GUI design and data entry
as this is usually handled by a client application. Assuming that somewhere in your
application is a data store, probably a data base, you need to decide if the data here is to be
stored. You could use a common encoding, for example UNICODE. See “WebSphere MQ and
UNICODE.” for more information on using MQ and UNICODE. Alternatively, you may decide
to tag data and retain different encodings for each language. You could store the CCSID with
each piece of data for example.

Getting messages to flow between queue managers which have CCSIDs set to different
languages can be a problem. One solution applicable to some platforms is default data
conversion: see “Default data conversion”. Another way is to use the change queue manager
CCSID function to change all the queue managers to use CCSIDs for a single language. You
can still send messages in different CCSIDs by coding the CCSID in you sending application
in the MQPUT MD field.

If you want to use data conversion in you MQGET you can have a problem deciding which
CCSID to convert into if you do not know the language of the message. For example, if you
were sending Korean and German messages, in ASCII to an iSeries machine and wanted to
convert these to EBCDIC if you cannot use a single CCSID in EBCDIC which can represent
the accented characters of German and the multibyte characters of Korean. One suggestion is
to use a separate queue for each language, so you can code the appropriate CCSID in the
MQGET MD.

Data Conversion Under WebSphere MQ

20

WebSphere MQ and UNICODE

What is UNICODE?
The UNICODE standards define a list of about 40000 characters which contain most of the
characters used by the majority of people in the world today. This includes East and Western
Europe, Arabic, Hebrew, Russian and the characters used in Mainland China, Taiwan, Korean
and Japan. There are various ways these characters can be given binary values, which I will
call ‘encoding’. The basic encoding is to use two bytes (16 bits) to represent each character.
This is the number you will find in the UNICODE standard: for details I use the (large) book
The Unicode Standard, Version 3.0 Publisher: Addison-Wesley Professional; Bk&CD Rom
edition (February 16, 2000) ISBN: 0201616335. A more recent edition is The Unicode
Standard, Version 4.0 (Boston, MA, Addison-Wesley, 2003. ISBN 0-321-18578-1). The
UNICODE web site is also useful: http://www.unicode.org/

This encoding is called ‘UCS-2’ or ‘UTF-16’. An alternative way of encoding the same
number is one which is variable in length, and uses one to three bytes. This is called ‘UTF-8’.
There are other encodings such as ‘UTF-7’ and ‘UTF-32’, but these are not supported by
WebSphere MQ.

Note: UCS-2 is a fixed-width encoding of 2 bytes per character. UTF-16 is an extension to
UCS-2 that includes additional characters represented as surrogate pairs (4 bytes per
character). Support for UTF-16 and UTF-8 in WebSphere MQ is limited to those Unicode
characters that may be encoded in UCS-2.

WebSphere MQ support for UNICODE
All WebSphere MQ products will pass messages in any encoding (including any UNICODE
encoding) as data, but not all can convert messages from UNICODE to other platform
specific encodings. The WebSphere MQ Application Programming Reference manual has a data
conversion appendix which contains some information on the platforms which support
UNICODE data conversion.

The message header structures on WebSphere MQ cannot contain data encoded in UCS-2 as
they are fixed length and assume one byte per character. As string data in the message header
must be in the CCSID of the queue manager, UCS-2 cannot be used as the queue manager
CCSID. On EBCDIC platforms, it is also not possible to use UTF-8 as the queue manager
CCSID because UTF-8 is based on ASCII. If you want to pass user data in UNICODE you
must always specify a UNICODE CCSID in the message descriptor (md) in an MQPUT call.
Similarly, if you are using data conversion by specifying MQGMO_CONVERT in the get
message options on an MQGET, you must specify a UNICODE CCSID in the md in an
MQGET. You should not set the channel conversion option to YES if you are using
UNICODE as this conversion will always be to the queue manager CCSID of the receiving
queue manager, which cannot be UCS-2 and UTF-8 is not supported as a queue manager
CCSID on all platforms.

Data Conversion Under WebSphere MQ

http://www.ibm.com/software/integration/mqfamily/library/manualsa/
http://www.unicode.org//////

21

UCS-2 and UTF-8 - which should you use?

UCS-2
Character processing UCS-2 is simpler as all characters are 16 bit integers (2 bytes), but note
that basic C string functions will not work as UCS-2 data can contain many embedded
NULLs. Also note that UCS-2 data is integer data so you have to be careful about the
representation: On most Intel platforms this is ‘little-endian’ and on iSeries, zSeries and many
UNIXes this is ‘big-endian’.

UTF-8
UTF-8 character processing is more complex as each character can take one to three bytes to
represent. UTF-8 has the useful property that the basic ASCII characters in the range x’20’ to
x’7E’ take one byte. Also all the control character in the range x’00’-x’1F’ also only take one
byte. This ensures there are no unexpected NULLs in the data and makes it ‘file safe’. Also, if
most of your data is basic ASCII the number of bytes used is less than for UCS-2. However
some characters will take more space in UTF-8 than in UCS-2. The transformation between
UCS-2 and UTF-8 is described in the UNICODE standard book. WebSphere MQ can convert
from UCS-2 to UTF-8.

UNICODE CCSIDs
The UCS-2 CCSIDs are 1200, 13488, and 17584. Strictly 13488 is the CCSID for UNICODE
V2.0 and 17584 the CCSID for UNICODE V2.1 (which adds a few characters including the
euro). WebSphere MQ will treat these as identical. The UTF-8 CCSID is 1208.

Designing UNICODE applications for WebSphere MQ
I would strongly advise a pilot application to check that all the support you need is in place.
There are many ways you could deploy UNICODE to solve the multilingual problem: Here
are a few.

1. Convert all you message data to/from UNICODE in your client and use
WebSphere MQ as a transport layer. All your server processing is done in
UNICODE. This does not use the WebSphere MQ conversion services and is
particularly applicable to clients where there are good platform converters
between the UNICODE and platform codepages (for example AIX or NT).

2. Convert all messages to/from UNICODE in the server and use WebSphere
MQ as a transport layer. All your server processing is done in UNICODE. This
does not use the WebSphere MQ conversion services and is particularly
applicable to servers where there are good platform converters between the
UNICODE and codepages.

3. Use WebSphere MQ to perform the conversion. This requires the queue
managers at each end to be able to perform conversion to and from
UNICODE.

Data Conversion Under WebSphere MQ

22

GB18030
GB18030 is the name of the latest Simplified Chinese code standard. WebSphere MQ V5.3
or later supports conversion between GB18030 and Unicode. This support is for the ‘phase
one’ subset of GB18030. Characters in GB18030 can use one, two or four bytes. Those
defined in phase one can be represented in Unicode UCS-2 in two bytes. WebSphere MQ
does not support the conversion of GB18030 characters which are encoded in Unicode using
surrogates which require 4 bytes in the UTF-16 encoding.

Data Conversion Under WebSphere MQ

23

Default data conversion
Ever had the problem of connecting a US English Queue Manager to a Japanese Queue
Manager? Has someone wanted to set up a global network with English, Greek, Cyrillic
(Russian), and Turkish machines? Usually this will fail with the channel not starting, and a
“conversion not supported” message. As explained above, for any information to flow from
one machine to another, data must be converted to the receiving queue manager’s CCSID and
encoding. In general there are no inter-language conversion tables available. How would you
represent a Kanji (Japanese) character in a Latin character set? However, the data in headers
which is required to process a message, and which flows between channels when they
negotiate their connection, is in very restricted character set: usually A-Z, a-z, 0-9 and a few
special characters. To convert this data all that is required is to know if it is ASCII or
EBCDIC, then a single table can be used to perform the conversion, in theory (there are
limitations: see below).

On the WebSphere MQ products (AIX, Windows, Sun Solaris, HP-UX and Linux), this is
called default data conversion. This is enabled by defining a default ASCII CCSID and a
default EBCDIC CCSID. If the platform does not have a conversion table from CCSID A to
CCSID B but CCSIDs A and B are known to the queue manager, (unless it is a very new one
they will be), and the defaults are defined then the following will happen:

 If the CCSIDs A and B are both ASCII or both EBCDIC, the data is passed on
unconverted.

 If one of the CCSIDs is ASCII and the other EBCDIC, then the default values will be
used to perform the conversion. Obviously this means that you should use an ASCII/
EBCDIC pair which is supported on your platform.

The use of default data conversion is intended to enable data to be transferred between
queue managers whose CCSIDs represent CCSIDs for different character sets.

Enabling default data conversion
In the ccsid.tbl file un-comment the two lines which define the EBCDIC and ASCII default
values. The suggested defaults are 500 and 850, but you can change these, making sure
conversion between them is supported. This change will be picked up on the next MQCONN.

Limitations
Default data conversion is not intended for user data conversion as it may not do the
conversion you expected. Conversion exits do not use default conversion without special
modification to the exit code. The options parameter in the MQXCNVC calls in the user exit
must include the value DCC_DEFAULT_CONVERSION. This will require the programmer
of the exit to manually make this change to the user exit code, as the conversion code
generating command crtmqcvx does not include this value in the options parameter. To
include the value the programmer should “OR” the value DCC_DEFAULT_CONVERSION
with the other options set in the code.

If default data conversion is set it will be used in internal conversions including, for

Data Conversion Under WebSphere MQ

24

example, the conversion of messages with a message format of MQFMT_STRING.

Be careful if using default conversion with EBCDIC Japanese CCSIDs 290, 930 and 5026.
The codes used for lower case Latin characters in these CCSIDs are different to any other
EBCDIC CCSID. If you use CCSID 500 as your EBCDIC default the lower case characters
converted using default conversion will be converted as defined by CCSID 500. If you want
your default to use 290/930/5026 for EBCDIC change the EBCDIC default value to 930 or
5026 and the ASCII value to a CCSID which can be used for conversion to 930 or 5026, eg:
932, 94, 954, or 5050 which are ASCII or euc Japanese CCSIDs.

Another alternative when using Japanese EBCDIC codes is to make sure all the object names
used for WebSphere MQ objects use only uppercase Latin characters.

Data Conversion Under WebSphere MQ

25

Appendix A. Control code conversions
Conversion of control characters between EBCDIC and ASCII can cause problems. Some
platforms make an attempt to convert them but there is a problem here, ASCII has only 32
code points for control characters while EBCDIC assigns 64, so 32 of the EBCDIC control
characters will be converted to character values in ASCII. The following is a list of control
characters which will, in general, be preserved during data conversion.

Table 4. Control code conversion.

Name EBCDIC
hex code

ASCII
hex code

Name EBCDIC
hex code

ASCII
hex

code
 NUL - Null 00 00 EM - End Message 19 19

 SOH - Start Of
Heading

 01 01 FS – File Separator 1C 1C

 STX - Start Of Text 02 02 IGS - Interchange
Group Separator

 1D 1D

 ETX - End Of
Heading

 03 03 IRS - Interchange
Record Separator

 1E 1E

 HT - Horizontal
Tab

 05 09 IUS/ITB - Interchange
Unit Separator/
Intermediate
Transmission Block

 1F 1F

 VT - Vertical Tab 0B 0B LF - Line Feed 25 0A

 FF - Form Feed 0C 0C ETB - End of
Transmission Block

 26 17

 CR - Carriage
Return

 0D 0D ESC - Escape 27 1B

 SO - Shift Out 0E 0E ENQ - Enquiry 2D 05

 SI - Shift In 0F 0F ACK - Acknowledge 2E 06

 DLE - Data Link
Escape

 10 10 BEL - Bell 2F 07

 DC1 - Device
Control 1

 11 11 SYN - Synchronous
Idle

 32 16

 DC2 - Device
Control 2

 12 12 EOT – End of
Transmission

 37 04

 DC3 - Device
Control 3

 13 13 DC4 - Device Control
4

 3C 14

 BS - BackSpace 16 08 NAK - Negative
Acknowledge

 3D 15

 CAN - Cancel 18 18 SUB – Substitute 3F 1A

Note that this table does not include the NL (hex 15) character. There is no newline character

Data Conversion Under WebSphere MQ

26

in most ASCII CCSIDs. Most WebSphere MQ products convert this to ASCII line feed (hex
0A). See Appendix C, “How the non-z/OS platforms treat EBCDIC newline” for a detailed discussion on
Newline!

Data Conversion Under WebSphere MQ

27

Appendix B. CCSID.TBL
There has been some confusion on the use of this file. Internally WebSphere MQ needs to
know various bits of information about a CCSID. This includes which conversion table to use
and if it is EBCDIC or ASCII, Single byte or Multibyte.

WebSphere MQ for AIX, HP-UX
All of the well known CCSIDs have table entries internally for this information. Only if a
CCSID error message is issued (eg amq6050 or amq6053) should you consider adding an
entry in the ccsid.tbl file. If you are adding a new conversion table you will, in general, NOT
have to add anything to the ccsid.tbl file as the CCSIDs will be known to WebSphere MQ,
but the particular conversion table for the pair of CCSIDs may not have been provided.

If you think you need an entry it would be a good idea to contact WebSphere MQ service to
confirm this is needed and get the correct entry to put in the table. Putting the wrong data in
the table could cause further conversion errors.

On the WebSphere MQ V5 products (AIX, Windows, Sun Solaris, Linux and HP-UX), the
table can be used to enable default data conversion: see “Default data conversion” for details.

WebSphere MQ for Windows, Linux, Sun Solaris
The Windows, Linux and Sun Solaris ccsid.tbl contains all the entries used by the product.

Data Conversion Under WebSphere MQ

28

Appendix C. How the non-z/OS platforms treat EBCDIC
newline
There is no perfect answer on what to do with the EBCDIC NL character. On PC ASCII (eg
codepage 850) there is no control code assigned to NL, so the tables used would convert this
character (when converting from EBCDIC to ASCII) to the codepoint for a character in
codepage 850 which is NOT present in the EBCDIC codepage.

On ISO based codepages (eg ISO 8859-1 or Roman8) as used on HP, there is a control code
assigned (hex 85). On some versions of HP, the HP conversion even does this if the codeset is
a multibyte codeset, and this created invalid or unexpected DBCS characters, as hex 85 is part
of some of the defined DBCS character range.

One solution would be to leave the ISO conversions unchanged on HP, but fix all the others.
This would leave the problem of understanding what a New line character in WebSphere MQ
is. Customer would also have the same problem when writing applications to run on different
codesets or platforms. If you want your code to run on the different PC ASCII codes your
newline detection would have to be aware of all the variations of conversion tables.

To fix this, WebSphere MQ for AIX, Windows, Sun Solaris, Linux and HP-UX always
convert the EBCDIC NL to Line feed before using any of the conversion tables supplied,
giving a consistent behavior across all platforms and codesets.

The behaviour of WebSphere MQ’s conversion of NL can be modified by setting the
ConvEBCDICNewline stanza in the MQS.INI file on UNIX and iSeries platforms. On
Windows systems, you modify configuration information using the properties pages for
WebSphere MQ, accessed from the WebSphere MQ Services snap-in.

The values supported are:

NL_TO_LF EBCDIC NL is converted to ASCII LF. This is the default behaviour, and is
how all V5.0 products behave.

TABLE EBCDIC NL is converted to what ever value is specified in the supplied
conversion tables.

ISO EBCDIC NL is converted to what ever value is specified in the supplied
conversion tables if the source is an ISO CCSID otherwise the conversion is
the same as NL_TO_LF.

You should only set the ConvEBCDICNewline stanza if you are sure you want the behavior
specified. It is really only of use when converting from EBCDIC to an ISO version of ASCII
which includes a NL character in its control values. In this case you will get a round trip
conversion for the NL character when converting from EBCDICASCIIEBCDIC.

However, if you set the value to TABLE and convert to other ASCII CCSIDs you will find
the NL character will be converted to many different values in ASCII. The values will be
found to vary from one platform to another and between different ASCII CCSIDs on the same
platform.

Data Conversion Under WebSphere MQ

29

Appendix D. How CCSIDs relate to code set names
On many platforms, for example some UNIX, we use the iconv conversion method. This requires the
use of codeset names to describe the data conversions. Here is some information on how to convert a CCSID to
a code set name. In many cases the conversion table name is made up of the codeset names of the conversion.

AIX, HP-UX and DEC-OVMS

Table 5. Codeset names and CCSIDs

CCSIDs

Description

Codeset name
AIX HP-UX OVMS

819 Latin Western
European

ISO8859-1 iso88591 iso8859-1

912 Latin Eastern
European

ISO8859-2 iso88592 iso8859-2

915 Cyrillic ISO8859-5 iso88595 iso8859-5
1089 Arabic ISO8859-6 iso88596 iso8859-6
813 Greek ISO8859-7 iso88597 iso8859-7
916 Hebrew ISO8859-8 iso88598 iso8859-8
920 Turkish ISO8859-9 iso88599 iso8859-9
950 Traditional

Chinese
big5 big5 big5

954 5050 33722 Japanese IBM-eucJP eucJP eucJP, deckanji,
sdeckanji

970 Korean IBM-eucKR eucKR deckorean
964 Traditional

Chinese
IBM-eucTW eucTW eucTW,

dechanyu
1383 Simplified

Chinese
IBM-eucCN eucCN eucCN

1051 HP-UX Latin IBM-1051 roman8 IBM1051
285 UK English

EBCDIC
IBM-285 engle IBM285

297 French EBCDIC IBM-297 frene IBM297
285 German

EBCDIC
IBM-273 germe IBM273

xxxx usual default
name

IBM-xxxx cpxxxx IBMxxxx

Data Conversion Under WebSphere MQ

30

Appendix E. How to set the Queue Manager CCSIDs
The Queue Manager CCSID is important as it defines the default CCSID for messages being
created using MQPUT and is the default CCSID which will be used for conversion when
messages are retrieved using MQGET. If the channel option CONVERT(YES) is set the
conversion is made into the receiving Queue Manager’s CCSID.

How to set the Queue Manager CCSID on WebSphere MQ for z/OS
For z/OS change the Queue Manger CCSID from its default value of 500. To change the
queue manager CCSID on z/OS use CSQ6SYSP macro setting the QMCCSID parameter. See
the WebSphere MQ for z/OS System Setup Guide for more information.

Non z/OS platforms

Displaying the Queue Manager CCSID
To display the queue manager CCSID use the DIS QMGR command from within runmqsc.

Setting the Queue Manager CCSID on WebSphere MQ for UNIX products
The CCSID is set when the queue manager is created. The CCSID used is the CCSID for the
codeset of the locale of the user running the crtmqm command. You can change the Queue
Manager CCSID using the mqsc qmgr alter command, as well as by deleting the queue
manager. You must still stop the queue manager and any other WebSphere MQ processes (for
example the command server) after changing the CCSID, and then restart them otherwise
there is a possibility that different processes could be using old and new CCSIDs.

Examples of CCSIDs set for different locales
On HP
export LANG=en_US.iso88591
 uses the codeset iso88591
 and will set a CCSID of 819
export LANG=en_US.roman8
 uses the codeset roman8
 and will set a CCSID of 1051
export LANG=C (this is the default locale)
 uses the codeset roman8
 and will set a CCSID of 1051

On AIX
export LANG=en_US
 uses the codeset ISO8859-1
 and will set a CCSID of 819

export LANG=EN_US.UTF-8
 uses the codeset UTF-8
 and will set a CCSID of 1208

Data Conversion Under WebSphere MQ

http://www.ibm.com/software/integration/mqfamily/library/manualsa/

31

export LANG=C (this is the default locale)
 uses the codeset ISO8859-1
 and will set a CCSID of 819

Data Conversion Under WebSphere MQ

32

Setting the Queue Manager CCSID on WebSphere MQ for Windows
The CCSID is set when the queue manager is created. The CCSID used is the CCSID for the
codepage of the console of the user running the crtmqm command. You can change the
Queue Manager CCSID using the mqsc qmgr alter command, as well as by deleting the queue
manager. You must still stop the queue manager and any other WebSphere MQ processes (for
example the command server) after changing the CCSID, and then restart them otherwise
there is a possibility that different processes could be using old and new CCSIDs.

The console codepage can be displayed and changed using the chcp command.

For information on which CCSID to choose for single byte languages, see Appendix G,
“Windows and OEM codepages”.

Note: Language specifics.

The CCSID used for Japanese Windows codepage is 932, but this can be changed by
modifying an entry in the ccsid.tbl file to use 943. The CCSID 932 is used by IBM for the
codepage used on IBM-PCs and is slightly different in definition to the 932 codepage defined
by Microsoft for Windows. IBM has defined a CCSID 943 which matches the Microsoft
definition.

The CCSID used for Simplified Chinese Windows is 1381, even though the Windows
codepage is set to 936, as the IBM definition of CCSID 1381 is closer to the Microsoft
codepage 936 than the IBM CCSID 936. This can be changed by modifying an entry in the
ccsid.tbl file to use 1386. The CCSID 1386 (GBK) is defined by IBM to more closely match
the Microsoft definition of 936.

The CCSID used for Korean Windows codepage is 949, but this can be changed by
modifying an entry in the ccsid.tbl file to use 1363. The CCSID 949 is used by IBM for the
codepage used on IBM-PCs and is slightly different in definition to the 949 codepage defined
by Microsoft for Windows. IBM has defined a CCSID 1363 which matches the Microsoft
definition.

Setting the Queue Manager CCSID on WebSphere MQ for iSeries
The CCSID is fixed when the queue manager is created. The queue manager CCSID cannot
be changed. The CCSID used for the queue manager is the value of system value QCCSID. If
this is set to 65535 the job default CCSID is used. To change the CCSID the queue manager
must be deleted, the value of QCCSID changed and the queue manager re-created.

Note: The job default CCSID is set by the iSeries system to a valid value, and is derived form
the job language and country values and cannot be changed directly by the users.

Displaying iSeries CCSID values
To display the value of QCCSID enter dspsysval QCCSID
To display the job default CCSID, enter dspjob
Select job definition attributes
Look for the value of Default Coded Character Set Identifier which is near the end of the list
on screen three.

Data Conversion Under WebSphere MQ

33

Setting the Queue Manager CCSID on MQSeries for HP OpenVMS
The CCSID is set when the queue manager is created. The CCSID used is the CCSID for the
codeset of the locale of the user running the crtmqm command. The queue manager CCSID
cannot be changed. To change the CCSID the queue manager must be deleted, the locale
changed, and the queue manager re-created.

OpenVMS locales are provided by the OpenVMS operating system, The search for the locale
file uses the SYS$I18N_LOCALE logical. To set your locale to use all the language specific
settings define a logical called SYS$LC_ALL or LC_ALL at the system, group or job level and
set this to the value of the locale you want to use. If you only want to select the actual locale
category used by WebSphere MQ to set the CCSID, define and set logicals SYS$LC_CTYPE
or LC_CTYPE.
Examples of the CCSID used for each locale value can be found in Appendix “codeset
support on MQSeries for Digital OpenVMS” in the “MQSeries for Digital OpenVMS System
Management Guide” publication.

To list you current locale use the LOCALE SHOW command. To list all the available locales use
the LOCALE SHOW PUBLIC command. If the list does not include the locale you wish to use
look on the OpenVMS binaries CD for the VMS I18N directory where you will find the
installation kit for additional locales, etc. When you install this kit you can choose which
territory to install. The territories supported include European plus US, Chinese, Japanese,
Korean and Thai.

You can use the LOCALE LOAD command to load the locale into shared memory, which will
improve the performance when using locales.

Data Conversion Under WebSphere MQ

http://www-1.ibm.com/support/docview.wss?uid=pub1gc33179100
http://www-1.ibm.com/support/docview.wss?uid=pub1gc33179100

34

Appendix F. How do EBCDIC Latin 1 codepages differ
Almost every major country in Western Europe has its own EBCDIC codepage. This reflects
the fact that these codepages were standardized when machines could only print or display 64
or 96 characters. Each country chose its favourite characters to be within this subset. When
the EBCDIC codepages were defined the 192 characters in all the Latin 1 related codepages
are included but the codepoints are different. A common problem reported is that conversion
works except for one or two characters. This may be due to the user using on EBCDIC
codepage to enter and display data, but using a different (usually codepage 500 as its the z/OS
default) to do the conversion.

In the table below the differences between the common codepages are listed. The codepages
listed are

37 USA, Canada

273 Germany, Austria

277 Denmark, Norway

278 Finland, Sweden

280 Italy

284 Spain, Latin America

285 United Kingdom

297 France

500 International

871 Iceland

1047 Latin 1, Open Systems (code page used by z/OS C compiler).

Data Conversion Under WebSphere MQ

35

Table 6. EBCDIC table differences

Character
 (name)

Hex code used by the character in this codepage.

USA Ger. D/N. F/S. It. Sp. UK Fr. Int Ice. Lat1

37 273 277 278 280 284 285 297 500 871 1047

[(left bracket) BA 63 9E B5 90 4A B1 90 4A AE AD
] (right bracket) BB FC 9F 9F 51 5A BB B5 5A 9E BD
{ (left brace) C0 44 9C 44 44 C0 C0 51 C0 8E C0
} (right brace) D0 DC 47 47 54 D0 D0 54 D0 9C D0
~ (tilde) A1 59 DC DC 58 BD BC BD A1 CC A1
@ (at sign) 7C B5 80 EC B5 7C 7C 44 7C AC 7C
¦ (split vertical
bar)

6A CC 70 CC CD 49 6A DD 6A 6A 6A

(number sign)
(hash) (pound)

7B 7B 4A 63 B1 69 7B B1 7B 7B 7B

` (grave) 79 79 79 51 DD 79 79 A0 79 8C 79
^ (hat)
(circumflex)

B0 5F 5F 5F 5F BA BA 5F 5F EC 5F

§ (section) B5 7C B5 4A 7C B5 B5 5A B5 B5 B5
! (exclamation
point)

5A 4F 4F 4F 4F BB 5A 4F 4F 4F 5A

$ (dollar) 5B 5B 67 67 5B 5B 4A 5B 5B 5B 5B
¬ (logical not) 5F BA BA BA BA 5F 5F BA BA BA B0
¨ (diaresis)
(umlaut)

BD BD BD BD BD A1 BD A1 BD BD BB

£ (pound
sterling)

B1 B1 B1 B1 7B B1 5B 7B B1 B1 B1

¢ (cent) 4A B0 B0 B0 B0 B0 B0 B0 B0 B0 4A
| (vertical bar)
(logical or)

4F BB BB BB BB 4F 4F BB BB BB 4F

¤ (international
currency)
(sputnik)

9F 9F 5A 5A 9F 9F 9F 9F 9F 9F 9F

µ (mu) A0 A0 A0 A0 A0 A0 A0 79 A0 A0 A0
ß (beta) 59 A1 59 59 59 59 59 59 59 59 59
\ (back slash) E0 EC E0 71 48 E0 E0 48 E0 BE E0
° (degree) 90 90 90 90 4A 90 90 4A 90 90 90
¯ (overline) BC BC BC BC BC BC A1 BC BC BC BC
´ (acute) BE BE BE BE BE BE BE BE BE E0 BE
ä (a umlaut) 43 C0 43 C0 43 43 43 43 43 43 43
à (a grave) 44 44 44 44 C0 44 44 7C 44 44 44
å (a overcircle) 47 47 D0 D0 47 47 47 47 47 47 47
Ä (A umlaut) 63 4A 63 7B 63 63 63 63 63 63 63

Data Conversion Under WebSphere MQ

36

Å (A
overcircle)

67 67 5B 5B 67 67 67 67 67 67 67

æ (ae ligature) 9C 9C C0 9C 9C 9C 9C 9C 9C D0 9C
Æ (AE
ligature)

9E 9E 7B 9E 9E 9E 9E 9E 9E 5A 9E

ç (c cedilla) 48 48 48 48 E0 48 48 E0 48 48 48
ð (eth) 8C 8C 8C 8C 8C 8C 8C 8C 8C 79 8C
Ð (Eth) (D
stroke)

AC AC AC AC AC AC AC AC AC 7C AC

é (e acute) 51 51 51 79 5A 51 51 C0 51 51 51
è (e grave) 54 54 54 54 D0 54 54 D0 54 54 54
É (E acute) 71 71 71 E0 71 71 71 71 71 71 71
ì (i grave) 58 58 58 58 A1 58 58 58 58 58 58
ñ (n tilde) 49 49 49 49 49 6A 49 49 49 49 49
Ñ (N tilde) 69 69 69 69 69 7B 69 69 69 69 69
ø (o slash) 70 70 6A 70 70 70 70 70 70 70 70
Ø (O slash) 80 80 7C 80 80 80 80 80 80 80 80
ö (o umlaut) CC 6A CC 6A CC CC CC CC CC A1 CC
ò (o grave) CD CD CD CD 6A CD CD CD CD CD CD
ü (u umlaut) DC D0 A1 A1 DC DC DC DC DC DC DC
ù (u grave) DD DD DD DD 79 DD DD 6A DD DD DD
Ö (O umlaut) EC E0 EC 7C EC EC EC EC EC 5F EC
Ü (U umlaut) FC 5A FC FC FC FC FC FC FC FC FC
Ý (Y acute) AD AD AD AD AD AD AD AD AD AD BA
þ (thorn) 8E 8E 8E 8E 8E 8E 8E 8E 8E C0 8E
Þ (Thorn) AE AE AE AE AE AE AE AE AE 4A AE

Note: The hex values underlined are those which do not match the most common value used
for this character.

Data Conversion Under WebSphere MQ

37

Appendix G. Windows and OEM codepages
For most single byte languages Windows supports two different codepages. For console
output and OEM applications, for example the EDIT application, the OEM codepage
(typically 850) is used. For windows applications, for example the NOTEPAD applications,
the windows codepage (typically 1252) is used. You can demonstrate the differences by
editing the same file using EDIT and NOTEPAD and looking at some special characters (like
the pound sterling or an accented character). The characters will display differently in each
editor.

If your application uses characters which have different binary values in the two codepages
you need to think about which you want to use. If you are using the console to display most of
your data then the OEM codepage is the right one, but if you are using mainly windows
applications the windows codepage is the right one.

When you create a queue manager the CCSID used for the queue manager is the codepage
used by the console. Usually the default for this is an OEM codepage. You can use the
command CHCP to display the current setting, and can also use it to change the codepage to
the windows codepage (for example 1252) if you want. If you want the windows codepage to
be used by WebSphere MQ as its default you need to create your queue manager with the
queue manger CCSID set to the windows codepage.

When WebSphere MQ sends a message to another system the codepage you send with the
message will determine which conversion table is used. If you get characters being converted
to unexpected values then this may be because you data has had the wrong CCSID assigned
to it. For example, if the data you are sending is created by a windows application but the
queue manager has been created with an OEM codepage the default on an MQPUT is to
assign the message a OEM CCSID. If your applications are going to create messages in only
Windows CCSIDs the best solution is to delete the queue manger, use CHCP to change you
codepage to the windows codepage, and recreate the queue manager.

If you are using more than one application, and they may be using both OEM and windows
codepages, you can override the default CCSID by specifying the message CCSID in the
CodedCharSetId filed of the MQMD structure on your MQPUT.

Table 7 shows the OEM and windows codepages for various language groups.

Data Conversion Under WebSphere MQ

38

Table 7. Windows and OEM codepages

Description OEM Codepage Windows
Codepage

USA and Canada 437 1252
Latin 1 used for most Western European
languages.

850 1252

Latin 2 used for Eastern European
languages.

852 1250

Cyrillic 855, 866 1251
Greek 813 1253
Turkish 857 1254
Hebrew 862 1255
Arabic 864 1256
Baltic rim 921, 922 1257

Note: Not all the OEM codepages are supported by all Windows operating systems.

Note: For Multibyte CCSIDs used on Windows see “Setting the Queue Manager CCSID
on WebSphere MQ for Windows”.

Data Conversion Under WebSphere MQ

39

Appendix H. Notices
The following paragraph does not apply to any country where such provisions are inconsistent
with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do
not allow disclaimer of express or implied warranties in certain transactions, therefore this
statement may not apply to you.

References in this publication to IBM products, programs, or services do not imply that IBM
intends to make these available in all countries in which IBM operates. Any reference to an
IBM product, program, or service is not intended to state or imply that only that IBM product,
program, or service may be used. Any functionally equivalent product, program, or service
that does not infringe any of the intellectual property rights of IBM may be used instead of the
IBM product, program, or service. The evaluation and verification of operation in conjunction
with other products, except those expressly designated by IBM, are the responsibility of the
user.

Licensees of this program who wish to have information about it for the purpose of enabling:
(i) the exchange of information between independently created programs and other programs
(including this one) and (ii) the mutual use of the information which has been exchanged,
should contact Laboratory Counsel, MP151, IBM United Kingdom Laboratories, Hursley
Park, Winchester, Hampshire, England SO21 2JN. Such information may be available,
subject to appropriate terms and conditions, including in some cases, payment of a fee.

IBM may have patents or pending patent applications covering subject matter in this
document. The furnishing of this document does not give you any license to these patents.
You can send license inquiries, in writing, to the IBM Director of Licensing, IBM
Corporation, 500 Columbus Avenue, Thornwood, New York 10594, U.S.A.

Trademarks
The following terms are trademarks of the IBM Corporation in the United States or other
countries or both.

AIX AS/400 IBM
MQ WebSphere MQ MVS
MVS/ESA Operating System/400 iSeries
OS/400 z/OS zSeries
System/390 400 VSE/ESA

UNIX is a registered trademark in the United States and other countries licensed exclusively
through X/Open Company Limited.

C-bus is a trademark of Corollary, Inc.

Data Conversion Under WebSphere MQ

40

Microsoft, Windows, and the Windows 95 logo are trademarks or registered trademarks of
Microsoft Corporation..

Java and HotJava are trademarks of Sun Microsystems, Inc.

Other company, product, and service names, which may be denoted by a double asterisk (**),
may be trademarks or service marks of others.

©Copyright IBM Corp. 1997, 2009

Data Conversion Under WebSphere MQ

	Introduction
	Acronyms and terms used in Data Conversion
	The Pieces in the Data Conversion Puzzle
	Coded Character Set Identifier (CCSID)
	Encoding

	What Gets Converted, and How
	The Message Descriptor
	The User portion of the message
	Common Procedures when doing the MQPUT
	The message is entirely numeric data
	The message is entirely character data
	The message is mixed numeric and character data
	Potential problems to be aware of

	Common Procedures to ensure conversion

	Where to Find the Conversion Tables
	On WebSphere MQ for AIX
	On WebSphere MQ for HP-UX
	On WebSphere MQ for Sun Solaris and Linux
	On WebSphere MQ for Windows
	Testing Conversion

	Hints and Tips
	Tracing (Windows, UNIX and iSeries)
	Supporting multiple languages
	WebSphere MQ and UNICODE
	What is UNICODE?
	WebSphere MQ support for UNICODE
	UCS-2 and UTF-8 - which should you use?
	UCS-2
	UTF-8

	UNICODE CCSIDs
	Designing UNICODE applications for WebSphere MQ
	GB18030

	Default data conversion
	Enabling default data conversion
	Limitations

	Appendix A. Control code conversions
	Appendix B. CCSID.TBL
	WebSphere MQ for AIX, HP-UX
	WebSphere MQ for Windows, Linux, Sun Solaris

	Appendix C. How the non-z/OS platforms treat EBCDIC newline
	Appendix D. How CCSIDs relate to code set names
	AIX, HP-UX and DEC-OVMS

	Appendix E. How to set the Queue Manager CCSIDs
	How to set the Queue Manager CCSID on WebSphere MQ for z/OS
	Non z/OS platforms
	Displaying the Queue Manager CCSID
	Setting the Queue Manager CCSID on WebSphere MQ for UNIX products
	Setting the Queue Manager CCSID on WebSphere MQ for Windows
	Setting the Queue Manager CCSID on WebSphere MQ for iSeries
	Displaying iSeries CCSID values
	Setting the Queue Manager CCSID on MQSeries for HP OpenVMS

	Appendix F. How do EBCDIC Latin 1 codepages differ
	Appendix G. Windows and OEM codepages
	Appendix H. Notices
	Trademarks

